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In this Letter, a new fractional entangling transformation (FrET) is proposed, which is generated in the en-
tangled state representation by a unitary operator expfiθðab† þ a†bÞg where aðbÞ is the Bosonic annihilate op-
erator. The operator is actually an entangled one in quantum optics and differs evidently from the separable
operator, expfiθða†a þ b†bÞg, of complex fractional Fourier transformation. The additivity property is proved by
employing the entangled state representation and quantum mechanical version of the FrET. As an
application, the FrET of a two-mode number state is derived directly by using the quantum version of the
FrET, which is related to Hermite polynomials.
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As a generalization of the Fourier transform, the fractional
Fourier transform (FrFT) has attracted much attention
and is used widely to design optical systems and optimize
holographic storage efficiency[1–5], whose applications
range from filter design and signal analysis to phase
retrieval and pattern recognition. Is there correspondence
between the classical-optical transform and quantum-
optical transform (unitary operator)? By using the Dirac’s
symbolic method and the technique of integration within
an ordered product (IWOP), the corresponding relation
between them has been bridged[6]. For example, the wave-
let transform is transformed into a matrix element of a
squeezing-translating operator between the state vector
corresponding to the given mother wavelet and the state
to be transformed by using this method[7]. This indicates
that we may not only find a new quantum mechanical uni-
tary operator corresponding to the classical transform, but
we also propose some new classical-optical transforms
from the point of quantum mechanics. In this Letter, on
the basis of complex FrFT, we shall introduce a new
FrET in a 2D case, whose quantum mechanical operator
corresponds to an entangling operator.
A brief review of the FrFT and complex FrFT is

presented next. The FrFT in one dimension of θ order
is defined as

F θ½f ðxÞ� ¼
Z

∞

−∞
K θðx; yÞf ðxÞdx; (1)

where the integral kernel function K θðx; yÞ is

K θðx; yÞ ¼
������������������
eiðπ2−θÞ
2π sin θ

s
exp

�
−i

x2 þ y2

2 tan θ
þ ixy
sin θ

�
: (2)

If we define f ðxÞ ≡ hxjf i and K θðx; yÞ ¼ hyjSθjxi where
jyi and jxi are coordinate Eigenvectors, X jxi ¼ xjxi, then
multiplying the functionK θðx; yÞ by the ket

R
∞
−∞ dyjyi and

bra
R∞
−∞ dxhxj from left and right, and using the IWOP

technique[8] to perform the integration, we can finally get

Sθ ¼
Z

∞

−∞
dxdyjyiK θðx; yÞhxj ≕ expfðeiθ − 1Þa†ag∶

¼ expfiθa†ag; (3)

where in the last step, we have used the formula
expff a†ag ≕ expfðef − 1Þa†ag∶[9,10]. Thus the FrFT can
be described, in quantum-mechanical language, as

F θ½f ðxÞ� ¼
Z

∞

−∞
hyjSθjxihxjf idx ¼ hyjSθjf i; (4)

where the completeness relation of coordinate representa-
tion is used Z

∞

−∞
dxjxihxj ¼ 1: (5)

From Eqs. (3) and (4), one can clearly see that the uni-
tary operator Sθ corresponding to the 1D FrFT is just the
rotation operator, and the FrFT is actually the matrix
element of Sθ in coordinate state hyj and transformed vec-
tor jf i under the quantum mechanical version of the
FrFT. Employing this version, it is easy and direct to dis-
cuss some properties of the FrFT.

As an extension, the complex FrFT is introduced by de-
fining the following transform[11]

F θ½f �ðη0Þ ¼
Z

∞

−∞

d2η
π

KC ðη0;ηÞf ðηÞ;

KC ðη0;ηÞ ¼
eiðθ−π

2Þ
2 sin θ

exp
�
iðjη0j2 þ jηj2Þ

2 tan θ
−
iðη0�ηþ η�η0Þ

2 sin θ

�
:

(6)

In a similar way, using the IWOP technique and
the completeness relation of the entangled state
representation[9]

Z
∞

−∞

d2η
π

jηihηj ¼ 1: (7)
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where jη ¼ η1 þ iη2i is the Eigenvector of commutable
operators: relative position X1 − X2 and the total
momentum P1 þ P2, i.e., ðX1 −X2Þjηi ¼

���
2

p
η1jηi,

ðP1 þ P2Þjηi ¼
���
2

p
η2jηi, and

jηi ¼ exp
�
−
1
2
jηj2 þ ηa† − η�b† þ a†b†

�
j00i: (8)

We can present Eq. (6) as the quantum version of

F θ½f �ðη0Þ ¼ hη0j exp½−iθða†a þ b†bÞ�jf i: (9)

Actually, from Eqs. (3) and (9) we see that the corre-
sponding unitary operators of the 1D and complex FrFT
are the (product of) rotation operators. Then an interest-
ing question naturally arises. Is there a unitary entangling
operator corresponding to a kind of complex FrFT? The
answer is affirmative. Next we shall propose such a frac-
tional transform.
Regarding the fractional entangling transform, if we

replace the integration kernel [Eq. (6)] with

KC ðη0; ηÞ ¼
1

2 sin θ

× exp
�
iðη02 þ η2 þ η0�2 þ η�2Þ

4 tan θ
−
iðηη0 þ η�η0�Þ

2 sin θ

�
;

(10)

then to what kind of transform does it belong? Is it still a
fractional FrFT? Actually, Eq. (10) just corresponds to
the integration kernel of the fractional entangling trans-
form. Letting KC ¼ hη0jU θjηi, and using the completeness
relation of entangled state representation [Eq. (7)], we can
express the operator U θ as

U θ ¼
Z

∞

−∞

d2ηd2η0

π2
jη0iKC ðη0; ηÞhηj: (11)

Furthermore, use of Eq. (8) and the normally ordering
form of vacuum project operator j00ih00j ≕ expf−a†a −
b†bg∶[9,12] as well as the IWOP technique, we can derive

U θ ¼
1

2 sin θ

Z
d2ηd2η0

π2
∶ exp

�
−
1
2
ðjη0j2 þ jηj2Þ

þ η0a† − η0�b† þ η�a − ηbþ iðη2 þ η�2 þ η02 þ η0�2Þ
4 tan θ

−
iðηη0 þ η�η0�Þ

2 sin θ
þ abþ a†b† − a†a − b†b

�
≕ exp½ðcos θ − 1Þða†a þ b†bÞ þ iðab† þ a†bÞ sin θ�∶

(12)

where we have used the integration formula (Appendix A
of Ref. [13])

Z
d2z
π

expð−ζjzj2 þ ξz þ ηz� þ f z2 þ gz�2Þ

¼ 1������������������
ζ2 − 4f g

p exp
�
ζξηþ ξ2g þ η2f

ζ2 − 4f g

�
: (13)

Equation (12) is the normally ordering form of operator
U θ. In order to see clearly the quantum mechanical corre-
spondence of Eq. (12), we first derive the transform
relation U θaU

†
θ. Using the normally ordering form of

U θ and the completeness relation of the coherent stateR
d2αjαihαj∕π ¼ 1, we can directly derive

U θaU
†
θ ¼

∂
∂τ

exp½ða cos θ − ib sin θÞτ�
����
τ¼0

¼ a cos θ − ib sin θ;

U θbU
†
θ ¼ b cos θ − ia sin θ; (14)

where we have used the IWOP technique and Eq. (13).
Thus, making the partial derivative for parameter θ
and using the transform in Eq. (14) we can obtain

∂
∂θ

U θ ¼ iðb†U θa þ a†U θbÞ cos θ − ða†U θa þ b†U θbÞ sin θ

¼ ½iðb†U θaU
†
θ þ a†U θbU

†
θÞ cos θ

− ða†U θaU
†
θ þ b†U θbU

†
θÞ sin θ�U θ

¼ iðab† þ a†bÞU θ; (15)

which indicates that

U θ ¼ expfiθðab† þ a†bÞg: (16)

Obviously, U θ is a unitary operator (U †
θ ¼ U−1

θ ). It is
interesting to note that U θ is actually a two-mode squeez-
ing operator (or entangling operator). Thus we name the
unitary operator U θ the fractional entangling operator
which is evidently different from the one of complex FrFT
in Eq. (9). In fact, the unitary operator U θ can be realized
experimentally by the interactions correspond to positive
detuning when the resonator frequency is larger than the
laser frequency in the optomechanical case (a nonlinear
process)[14].

Regarding the additivity of fractional transform, an im-
portant feature of the FrFT is the additivity property, i.e.,
F θF θ0 ¼ F θþθ0 . In order to prove this property of the frac-
tional entangling transform, using Eq. (16), we can put the
transform corresponding to the kernel [Eq. (10)] as

F θ½f �ðη0Þ ¼
Z

∞

−∞

d2η
π

KC ðη0; ηÞf ðηÞ

¼
Z

∞

−∞

d2η
π

hη0jU θjηihηjjf i

¼ hη0j expfiθðab† þ a†bÞgjf i; (17)

which is just the quantum version of the FrET. This in-
dicates that the FrET just corresponds to the matrix
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element of unitary operator expfiθðab† þ a†bÞg in the en-
tangled state representation hη0j and the signal vector jf i.
Using the quantum version of FrFT and the complete-

ness relation of the entangled state [Eq. (7)], it is easy to
see that

F θþα½f ðηÞ� ¼ hη0j expfiðθ þ αÞðab† þ a†bÞgjf i

¼
Z

∞

−∞

d2η00

π
hη0j expfiθðab† þ a†bÞgjη00i

×
Z

∞

−∞

d2η
π

hη00j expfiαðab† þ a†bÞgjηif ðηÞ

¼
Z

∞

−∞

d2η00

π
hη0j expfiθðab† þ a†bÞgjη00iF α½f ðηÞ�

¼ F θF α½f ðηÞ�: (18)

Thus the FrET actually satisfies the fractional additiv-
ity. The proof is clear and concise by using the represen-
tation hη0j and the quantum version of the FrET.
Regarding applications, the quantum version [Eq. (17)]

of the FrET can help us to derive the FrET of some wave
functions conveniently. In this Letter, we consider the two-
mode number state as the signal vector, jf i ¼ jm; ni ¼
a†mb†n∕

����������
m!n!

p j00i. Noting the coherent state representa-
tion of the number state jmi ¼ 1∕

������
m!

p ð∂m∕∂αmÞjαijα¼0,
where jαi ¼ expfαa†gj0i is the unnormalized coherent
(h0jαi ¼ 1), thus

f ðηÞ ¼ e−
1
2jηj2����������
m!n!

p ∂mþn

∂αm∂βn
exp½η�α− ηβ þ αβ�

����
α;β¼0

¼ imþne−
1
2jηj2����������

m!n!
p Hm;nð−iη�; iηÞ; (19)

where Hm;nðx; yÞ are two-variable Hermite polynomials
whose mother function is defined by[15]

Hm;nðx; yÞ ¼
∂mþn

∂tm∂τn
exp½−tτ þ tx þ τy�

����
t¼τ¼0

: (20)

On the other hand, note the transform relation
U θa†U

†
θ ¼ a† cos θ þ ib† sin θ, and U θb†U

†
θ ¼ b† cos θþ

ia† sin θ, it is easy to get

U θjm; ni

¼ 1����������
m!n!

p ða† cos θ þ ib† sin θÞmðb† cos θ þ ia† sin θÞnj00i

¼ 1����������
m!n!

p ∂mþn

∂αm∂βn
ea

†ðα cos θþiβ sin θÞþb†ðiα sin θþβ cos θÞj00i
����
α;β¼0

¼ 1����������
m!n!

p ∂mþn

∂αm∂βn
jᾱ; β̄i

����
α;β¼0

; (21)

where jᾱ; β̄i (ᾱ ¼ α cos θ þ iβ sin θ, β̄ ¼ iα sin θþ
β cos θ) are also unnormalized coherent states. Thus, us-
ing Eqs. (17) and (19) the FrET of the Hermite Gaussian
function [Eq. (19)] can be calculated as

F θ½f ðηÞ� ¼ hη0jU θjm;ni

¼ e−
1
2jη0 j2����������
m!n!

p ∂mþn

∂αm∂βn
exp½η0�ᾱ− η0β̄þ ᾱ β̄�

����
α;β¼0

¼
Xminðm;nÞ

l¼0

�
i

����������������
i sin 2θ

2

r 	mþn−2l ����������
n!m!

p
e−

1
2jη0j2 cosl 2θ

4l l!ðn − lÞ!ðm− lÞ!

×Hm−l

�
η̄

i
�������������������
2i sin 2θ

p
	
Hn−l

�
η̄�

i
�������������������
2i sin 2θ

p
	
;

(22)

where η̄ ¼ η0� cos θ − iη0 sin θ and we have used the
mother function formula of single-variable Hermite
polynomials

HnðxÞ ¼
∂n

∂tn
expð2xt − t2Þ

����
t¼0

;

d
dxl

HnðxÞ ¼
2ln!

ðn − lÞ!Hn−lðxÞ: (23)

Equation (22) is just the FrET of two-mode number
state which is related to the single-variable Hermite
polynomials.

In conclusion, based on the complex FrFT, we succes-
sively propose a new kind of fractional transform (the
FrET) by replacing the integration kernel with a new
one. Employing the IWOP technique and the entangled
state representation, the unitary operator corresponding
to the FrET is just a entangling operator and is evidently
different from that in the complex FrFT. The additivity
property, an important fractional feature, is easily proved
by using the matrix element expression and the complete-
ness relation of entangled state representation in the
framework of quantum mechanics. We should point out
that we not only find the quantum mechanical correspon-
dence (unitary operator) of the classical optical transform,
but also develop the classical one from the viewpoint of
quantum optics. That is to say, it is possible that some
other transforms can be presented by using different
quantummechanical unitary operators or representations.
In our derivation, the IWOP technique plays an impor-
tant role.
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